If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-38x-48=0
a = 5; b = -38; c = -48;
Δ = b2-4ac
Δ = -382-4·5·(-48)
Δ = 2404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2404}=\sqrt{4*601}=\sqrt{4}*\sqrt{601}=2\sqrt{601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{601}}{2*5}=\frac{38-2\sqrt{601}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{601}}{2*5}=\frac{38+2\sqrt{601}}{10} $
| 50m^2-24=0 | | 4x+x=7.2+5x | | 1/3(k+4)=7 | | 11-4x=21 | | (3x+8)+48=90 | | b÷4+16=48= | | p/5+2=4 | | 3-2x/4=5x-7.5/10 | | 3(h-10)+4(h+19)=13 | | 2x-1/2=4x+2/3 | | X+12y=20 | | 5x+83(x+2)=0 | | 2x-1/2=4x+3/3 | | 5x-2=1x+2 | | 2.9=y/6 | | 2x-6+4x=24 | | 1x+2=2x+1 | | 6x2+15x-99=0 | | .2x+.5=4 | | -1x+6=1x+2 | | n/4=6.3 | | 10x+9Y=40000 | | 1+5/6x=2+2/3x | | 1/(y-1)+1/(y+1)=1 | | 4(w-4)-6w=-28 | | 9(w^2+1=9 | | -8=4.3+c | | 3x+6=102 | | f/(f/2)-4=1 | | 3r+15=5r-25 | | 2x-8=1x+1 | | (3x-1)^.3333=4 |